SonicOS 7.1 Objects
- SonicOS 7.1 Action Objects
- About SonicOS
- Match Objects
- Zones
- How Zones Work
- Default Zones
- Security Types
- Allow Interface Trust
- Effect of Wireless Controller Modes
- Zones Overview
- The Zones Page
- Adding a New Zone
- Adding a New Zone in Policy Mode
- Adding a New Zone in Classic Mode
- Configuring a Zone for Guest Access
- Configuring a Zone for Open Authentication and Social Login
- Configuring the WLAN Zone
- Configuring the RADIUS Server
- Configuring DPI-SSL Granular Control per Zone
- Enabling Automatic Redirection to the User-Policy Page
- Cloning a Zone
- Editing a Zone
- Deleting Custom Zones
- Addresses
- Addresses Page
- About UUIDs for Address Objects and Groups
- Working with Dynamic Address Objects
- Services
- URI Lists
- Schedules
- Dynamic Group
- Email Addresses
- Match Objects
- Countries
- Applications
- Web Categories
- Websites
- Match Patterns
- Custom Match
- Profile Objects
- Endpoint Security
- Bandwidth
- QoS Marking
- Content Filter
- DHCP Option
- DNS Filtering
- Block Page
- Anti-Spyware
- Gateway Anti-Virus
- Log and Alerts
- Intrusion Prevention
- AWS
- Action Profiles
- Security Action Profile
- DoS Action Profile
- Action Objects
- App Rule Actions
- Content Filter Actions
- Object viewer
- SonicWall Support
Site to Site VPN over Public Networks
SonicOS integrated BWM is very effective in managing traffic between VPN connected networks because ingress and egress traffic can be classified and controlled at both endpoints. If the network between the endpoints is non-QoS aware, it regards and treats all VPN ESP equally. Because there is typically no control over these intermediate networks or their paths, it is difficult to fully guarantee QoS, but BWM can still help to provide more predictable behavior.
To provide end-to-end QoS, business-class service providers are increasingly offering traffic conditioning services on their IP networks. These services typically depend on the customer premise equipment to classify and tag the traffic, generally using a standard marking method such as DSCP.
SonicOS has the ability to:
- DSCP mark traffic after classification
- Map 802.1p tags to DSCP tags for external network traversal and CoS preservation.
For VPN traffic, SonicOS can DSCP mark not only the internal (payload) packets, but the external (encapsulating) packets as well so that QoS capable service providers can offer QoS even on encrypted VPN traffic.
The actual conditioning method employed by service providers varies from one to the next, but it generally involves a class-based queuing method such as Weighted Fair Queuing for prioritizing traffic, as well a congestion avoidance method, such as tail-drop or Random Early Detection.
Was This Article Helpful?
Help us to improve our support portal