SonicOSX 7 System
- SonicOSX 7
- Interfaces
- About Interfaces
- Interface Settings IPv4
- Adding Virtual Interfaces
- Configuring Routed Mode
- Enabling Bandwidth Management on an Interface
- Configuring Interfaces in Transparent IP Mode (Splice L3 Subnet)
- Configuring Wireless Interfaces
- Configuring WAN Interfaces
- Configuring Tunnel Interfaces
- Configuring VPN Tunnel Interfaces
- Configuring Link Aggregation and Port Redundancy
- Configuring One Arm Mode
- Configuring an IPS Sniffer Mode Appliance
- Configuring Security Services (Unified Threat Management)
- Configuring Wire and Tap Mode
- Layer 2 Bridged Mode
- Key Features of SonicOSX Layer 2 Bridged Mode
- Key Concepts to Configuring L2 Bridged Mode and Transparent Mode
- Comparing L2 Bridged Mode to Transparent Mode
- Comparison of L2 Bridged Mode to Transparent Mode
- Benefits of Transparent Mode over L2 Bridged Mode
- ARP in Transparent Mode
- VLAN Support in Transparent Mode
- Multiple Subnets in Transparent Mode
- Non-IPv4 Traffic in Transparent Mode
- ARP in L2 Bridged Mode
- VLAN Support in L2 Bridged Mode
- L2 Bridge IP Packet Path
- Multiple Subnets in L2 Bridged Mode
- Non-IPv4 Traffic in L2 Bridged Mode
- L2 Bridge Path Determination
- L2 Bridge Interface Zone Selection
- Sample Topologies
- Configuring Network Interfaces and Activating L2B Mode
- Configuring Layer 2 Bridged Mode
- Asymmetric Routing
- Configuring Interfaces for IPv6
- 31-Bit Network Settings
- PPPoE Unnumbered Interface Support
- Failover & LB
- Neighbor Discovery
- ARP
- MAC IP Anti-Spoof
- Web Proxy
- VLAN Translation
- IP Helper
- Dynamic Routing
- DHCP Server
- Configuring a DHCP Server
- Configuring Advanced Options
- Configuring DHCP Option Objects
- Configuring DHCP Option Groups
- Configuring a Trusted DHCP Relay Agent Address Group (IPv4 Only)
- Enabling Trusted DHCP Relay Agents
- Configuring IPv4 DHCP Servers for Dynamic Ranges
- Configuring IPv6 DHCP Servers for Dynamic Ranges
- Configuring IPv4 DHCP Static Ranges
- Configuring IPv6 DHCP Static Ranges
- Configuring DHCP Generic Options for DHCP Lease Scopes
- DHCP and IPv6
- Multicast
- Network Monitor
- AWS Configuration
- SonicWall Support
Port Redundancy Failover
SonicWall provides multiple methods for protecting against loss of connectivity in the case of a link failure, including High Availability (HA), Load Balancing Groups (LB Groups), and now Port Redundancy. If all three of these features are configured on an appliance, the following order of precedence is followed in the case of a link failure:
- Port Redundancy
- HA
- LB Group
When Port Redundancy is used with HA, Port Redundancy takes precedence. Typically an interface failover causes an HA failover to occur, but if a redundant port is available for that interface, then an interface failover occurs, but not an HA failover. If both the primary and secondary redundant ports go down, then an HA failover occurs (assuming the secondary Security Appliance has the corresponding port active).
When Port Redundancy is used with a LB Group, Port Redundancy again takes precedence. Any single port (primary or secondary) failures are handled by Port Redundancy just like with HA. When both the ports are down then LB kicks in and tries to find an alternate interface.
Was This Article Helpful?
Help us to improve our support portal