SonicOS 7 System
- SonicOS 7
- Interfaces
- About Interfaces
- Interface Settings IPv4
- Adding Virtual Interfaces
- Configuring Routed Mode
- Enabling Bandwidth Management on an Interface
- Configuring Interfaces in Transparent IP Mode (Splice L3 Subnet)
- Configuring Wireless Interfaces
- Configuring WAN Interfaces
- Configuring Tunnel Interfaces
- Configuring VPN Tunnel Interfaces
- Configuring Link Aggregation and Port Redundancy
- Configuring One Arm Mode
- Configuring an IPS Sniffer Mode Appliance
- Configuring Security Services (Unified Threat Management)
- Configuring Wire and Tap Mode
- Layer 2 Bridged Mode
- Key Features of SonicOS Layer 2 Bridged Mode
- Key Concepts to Configuring L2 Bridged Mode and Transparent Mode
- Comparing L2 Bridged Mode to Transparent Mode
- Comparison of L2 Bridged Mode to Transparent Mode
- Benefits of Transparent Mode over L2 Bridged Mode
- ARP in Transparent Mode
- VLAN Support in Transparent Mode
- Multiple Subnets in Transparent Mode
- Non-IPv4 Traffic in Transparent Mode
- ARP in L2 Bridged Mode
- VLAN Support in L2 Bridged Mode
- L2 Bridge IP Packet Path
- Multiple Subnets in L2 Bridged Mode
- Non-IPv4 Traffic in L2 Bridged Mode
- L2 Bridge Path Determination
- L2 Bridge Interface Zone Selection
- Sample Topologies
- Configuring Network Interfaces and Activating L2B Mode
- Configuring Layer 2 Bridged Mode
- Asymmetric Routing
- Configuring Interfaces for IPv6
- 31-Bit Network Settings
- PPPoE Unnumbered Interface Support
- Failover & LB
- Neighbor Discovery
- ARP
- MAC IP Anti-Spoof
- Web Proxy
- PortShield Groups
- Static and Transparent Mode
- SonicOS Support of X-Series Switches
- About the X-Series Solution
- Performance Requirements
- Key Features Supported with X-Series Switches
- PortShield Functionality and X-Series Switches
- PoE/PoE+ and SFP/SFP+ Support
- X-Series Solution and SonicPoints
- Managing Extended Switches using GMS
- Extended Switch Global Parameters
- About Links
- Logging and Syslog Support
- Supported Topologies
- Port Graphics
- Port Configuration
- External Switch Configuration
- External Switch Diagnostics
- Configuring PortShield Groups
- VLAN Translation
- IP Helper
- Dynamic Routing
- DHCP Server
- Configuring a DHCP Server
- Configuring Advanced Options
- Configuring DHCP Option Objects
- Configuring DHCP Option Groups
- Configuring a Trusted DHCP Relay Agent Address Group (IPv4 Only)
- Enabling Trusted DHCP Relay Agents
- Configuring IPv4 DHCP Servers for Dynamic Ranges
- Configuring IPv6 DHCP Servers for Dynamic Ranges
- Configuring IPv4 DHCP Static Ranges
- Configuring IPv6 DHCP Static Ranges
- Configuring DHCP Generic Options for DHCP Lease Scopes
- DHCP and IPv6
- Multicast
- Network Monitor
- AWS Configuration
- SonicWall Support
Asymmetric Routing
SonicOS supports asymmetric routing. Asymmetric routing is when the flow of packets in one direction passes through a different interface than that used for the return path. This can occur when traffic flows across different layer 2 bridged pair interfaces on the Security Appliance or when it flows across different appliances in a high availability cluster.
Any appliance that performs deep packet inspection or stateful firewall activity must “see” all packets associated with a packet flow. This is in contrast to traditional IP routing in which each packet in a flow may technically be forwarded along a different path as long as it arrives at its intended destination — the intervening routers do not have to see every packet. Today’s routers do attempt to forward packets with a consistent next-hop for each packet flow, but this applies only to packets forwarded in one direction. Routers make no attempt to direct return traffic to the originating router. This IP routing behavior presents problems for a appliance cluster that does not support asymmetric routing because the set of Cluster Nodes all provide a path to the same networks. Routers forwarding packets to networks through the cluster may choose any of the Cluster Nodes as the next-hop. The result is asymmetric routing, in which the flow of packets in one direction go through a node different than that used for the return path. This difference in flow causes traffic to be dropped by one or both Cluster Nodes as neither is “seeing” all of the traffic from the flow. See Asymmetric Routing.
In Asymmetric Routing, PC1 communicates with Server1, two-way traffic passes through different routers, that is, some packets of same connection go through blue path, some go through green path. On such deployments, the routers might run some redundancy route or load balancing protocols, for example, the Cisco HSRP protocol.
SonicOS uses stateful inspection. All connections passing through the appliance are bound to interfaces. With support for asymmetric routing, however, SonicOS tracks ingress and egress traffic, even when the flows go across different interfaces, and provides stateful, deep packet inspection.
Asymmetric routing is not the same as one-way connections without reply, that is, TCP State Bypass.
Was This Article Helpful?
Help us to improve our support portal